Dynamic Organization of Ligand-Grafted Nanoparticles during Adsorption and Surface Compression at Fluid–Fluid Interfaces

نویسندگان

  • Axel Huerre
  • Fernando Cacho-Nerin
  • Vincent Poulichet
  • Christiana E Udoh
  • Marco De Corato
  • Valeria Garbin
چکیده

Monolayers of ligand-grafted nanoparticles at fluid interfaces exhibit a complex response to deformation due to an interplay of particle rearrangements within the monolayer, and molecular rearrangements of the ligand brush on the surface of the particles. We use grazing-incidence small-angle X-ray scattering (GISAXS) combined with pendant drop tensiometry to probe in situ the dynamic organization of ligand-grafted nanoparticles upon adsorption at a fluid-fluid interface, and during monolayer compression. Through the simultaneous measurements of interparticle distance, obtained from GISAXS, and of surface pressure, obtained from pendant drop tensiometry, we link the interfacial stress to the monolayer microstructure. The results indicate that, during adsorption, the nanoparticles form rafts that grow while the interparticle distance remains constant. For small-amplitude, slow compression of the monolayer, the evolution of the interparticle distance bears a signature of ligand rearrangements leading to a local decrease in thickness of the ligand brush. For large-amplitude compression, the surface pressure is found to be strongly dependent on the rate of compression. Two-dimensional Brownian dynamics simulations show that the rate-dependent features are not due to jamming of the monolayer, and suggest that they may be due to out-of-plane reorganization of the particles (for instance expulsion or buckling). The corresponding GISAXS patterns are also consistent with out-of-plane reorganization of the nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions and stress relaxation in monolayers of soft nanoparticles at fluid-fluid interfaces.

Nanoparticles with grafted layers of ligand molecules behave as soft colloids when they adsorb at fluid-fluid interfaces. The ligand brush can deform and reconfigure, adopting a lens-shaped configuration at the interface. This behavior strongly affects the interactions between soft nanoparticles at fluid-fluid interfaces, which have proven challenging to probe experimentally. We measure the sur...

متن کامل

Forced desorption of nanoparticles from an oil-water interface.

While nanoparticle adsorption to fluid interfaces has been studied from a fundamental standpoint and exploited in application, the reverse process, that is, desorption and disassembly, remains relatively unexplored. Here we demonstrate the forced desorption of gold nanoparticles capped with amphiphilic ligands from an oil-water interface. A monolayer of nanoparticles is allowed to spontaneously...

متن کامل

Highly ordered 2D microgel arrays: compression versus self-assembly.

Monolayers of micro- and nanoparticles at fluid interfaces are a key component in a variety of applications, ranging from particle lithography to stabilizers in foams or emulsions. In addition to commonly used "hard" colloids, soft polymeric particles like microgels are attracting increasing attention due to their potential in the fabrication of tailored and responsive assemblies. In particular...

متن کامل

Mesoporous Silica Nanoparticles as a Nanocarrier for Delivery of Vitamin C

Background: In the last decades, mesoporous silica nanoparticles (MSN) are improved for drug delivery, imaging, and biomedical applications due to their special properties such as large surface area, high drug loading capacity, tunable pore size, and modification of surface area by functional groups. Objectives: The aim of this study was to evaluate MSNs as carriers for oral colon-specific and...

متن کامل

Molecular simulation of translational and rotational diffusion of Janus nanoparticles at liquid interfaces.

We perform molecular dynamics simulations to understand the translational and rotational diffusion of Janus nanoparticles at the interface between two immiscible fluids. Considering spherical particles with different affinity to fluid phases, both their dynamics as well as the fluid structure around them are evaluated as a function of particle size, amphiphilicity, fluid density, and interfacia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2018